Investigations on the mixed Jahn-Teller system $\left(\mathrm{Tb}_{x}, \mathrm{Dy}_{1-\mathrm{x}}\right) \mathrm{VO}_{4}$. III. Birefringence measurements in the monoclinic phase

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 1990 J. Phys.: Condens. Matter 21113
(http://iopscience.iop.org/0953-8984/2/5/005)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.96
The article was downloaded on 10/05/2010 at $21: 36$

Please note that terms and conditions apply.

Investigations on the mixed Jahn-Teller system $\left(\mathbf{T b}_{x}, \mathrm{Dy}_{1-x}\right) \mathrm{VO}_{4}:$ III. Birefringence measurements in the monoclinic phase

G Hess, W Hikel and H G Kahle
Physikalisches Institut, Universität Karlsruhe (TH), PO Box 6980, D-7500 Karlsruhe 1, Federal Republic of Germany

Received 2 May 1989, in final form 22 August 1989

Abstract

Birefringence measurements on the mixed crystal system $\left(\mathrm{Tb}_{x}, \mathrm{Dy}_{1-x}\right) \mathrm{VO}_{4}$ at different wavelengths in the visible part of the spectrum prove the macroscopic superposition of the two distortion types of Jahn-Teller-active TbVO_{4} and DyVO_{4} for concentrations $0.35 \leqslant x \leqslant 0.45$. Because of the superposition of the distortion types the crystals become monoclinic at low temperatures.

1. Introduction

In the first paper of this series [1], henceforth referred to as I, we reported on the phase diagram of the mixed Jahn-Teller system ($\left.\mathrm{Tb}_{x}, \mathrm{Dy}_{1-x}\right) \mathrm{VO}_{4}$ (figure 1 of paper I). For concentrations $x \leqslant 0.3$ the crystals distort like pure DyVO_{4}, which lowers its tetragonal high-temperature structure by a Γ_{4}^{+}distortion, i.e. the square base of the unit cell becomes a rectangle. For $x \geqslant 0.45$ the crystals distort like pure TbVO_{4}, which lowers its symmetry by a Γ_{3}^{+}distortion, i.e. the square base of the unit cell becomes a rhomb. For $x=0.35, x=0.40$ and in finite magnetic fields for $x=0.45$, the two distortion types superimpose. This means that at $T=T_{\mathrm{D} 1}$ the crystals become Γ_{3}^{+}distorted and at $T=$ $T_{\mathrm{D} 2}<T_{\mathrm{D} 1}$ they additionally become Γ_{4}^{+}distorted. They are then monoclinic and a dispersion of the optical indicatrix axes is observed (paper I).

In the second paper [2], henceforth referred to as II, we presented studies of the linear optical birefringence for the two orthorhombic phases. In the present paper we discuss the consequences of the superposition of the two types of distortion for the birefringence. We further show that the observed birefringence curves in this phase are caused by the simultaneous presence of the two distortions.

2. Experimental details

The low-temperature set-up and the light sources used in the experiments were the same as in paper II. The birefringence was measured by using light modulation (50 kHz) and computer-controlled compensation of the corresponding phase difference through a

Figure 1. Set-up of the optical components. The axes are defined in terms of the undistorted tetragonal crystal system as $\boldsymbol{a} \equiv[1,0,0], \boldsymbol{b} \equiv[0,1,0], \boldsymbol{x} \equiv[1,1,0]$ and $\boldsymbol{y} \equiv[1, \overline{1}, 0]$. The light propagates along $c \equiv[0,0,1]$. Full lines: transmission direction of polariser and analyser. Broken lines: directions of the azimuths of modulator and compensator, thus being at $\pi / 4$ with respect to the transmission direction of the polariser. Chain line: direction of one of the principal refractive indices of the sample; φ_{opt} is the angle between the latter direction and the \boldsymbol{a} axis. (a) Set-up I, generally used for measuring δn_{x}; in this case $\varphi=\varphi_{\text {opt }}+\pi / 4$. (b) Set-up II, generally used for measuring δn_{A}; in this case $\varphi=\varphi_{\text {opt }}$.
compensator. Two optical set-ups were used (see figure 1). In set-up I the transmission direction of the polariser is along \boldsymbol{a} or \boldsymbol{b}, the azimuths of modulator and compensator at $\pi / 4$ with respect to \boldsymbol{a} and \boldsymbol{b} (figure $1(a)$). This set-up was used to measure the birefringence δn_{X} in the orthorhombic case (see paper II) and it was also generally used for measuring δn_{X} in the monoclinic case. In set-up II the optical components (polariser, modulator, compensator and analyser) are turned by $\pi / 4$ with respect to set-up I, but the sample is left in its position (figure $1(b)$). This set-up was used to measure the birefringence δn_{A}. To avoid crystallographic domains a small magnetic field was applied. Three different field directions with respect to the crystal axes were used: (i) parallel to a, in which case no Γ_{4}^{+}domains exist but Γ_{3}^{+}domains are present, however; (ii) parallel to \boldsymbol{x}, in which case no Γ_{3}^{+}domains exist but Γ_{4}^{+}domains are present; (iii) parallel to \boldsymbol{w} with $\boldsymbol{w}=$ bisectrix of \boldsymbol{a} and \boldsymbol{x}, i.e. $\Varangle(\boldsymbol{a}, \boldsymbol{w})=\Varangle(\boldsymbol{w}, \boldsymbol{x})=\pi / 8$, in which case neither Γ_{3}^{+} domains nor Γ_{4}^{+}domains exist.

3. Birefringence in monoclinic crystals

3.1. Monoclinic distortion

In paper I the distortions of the pure substances DyVO_{4} and TbVO_{4} were written as

$$
\begin{equation*}
e_{\mathrm{A}}=2 e_{11}=e_{11}-e_{22}=\Delta a / a-\Delta b / b \tag{1}
\end{equation*}
$$

for the Γ_{4}^{+}distorted DyVO_{4} and

$$
\begin{equation*}
e_{\mathrm{X}}=2 e_{12}=\Delta x / x-\Delta y / y \tag{2}
\end{equation*}
$$

for the Γ_{3}^{+}distorted TbVO_{4}. Here e_{11}, e_{121}, e_{22} are components of the strain tensor [3], $\boldsymbol{a}, \boldsymbol{b}$ are the tetragonal $[1,0,0]$ and $[0,1,0]$ directions and $\boldsymbol{x}, \boldsymbol{y}$ are the tetragonal $[1,1,0]$ and $[1, \overline{1}, 0]$ directions, respectively.

The strain tensor for a superposition of the two distortion types then reads

$$
\boldsymbol{e}=\left(\begin{array}{rr}
e_{11} & e_{12} \tag{3}\\
e_{12} & -e_{11}
\end{array}\right)=\frac{1}{2}\left(\begin{array}{rr}
e_{\mathrm{A}} & e_{\mathrm{X}} \\
e_{\mathrm{X}} & -e_{\mathrm{A}}
\end{array}\right)
$$

where the third components are omitted. The difference of the eigenvalues of the tensor e

$$
\begin{equation*}
\lambda_{1}-\lambda_{2}=\left(e_{\mathrm{A}}^{2}+e_{\mathrm{X}}^{2}\right)^{1 / 2} \tag{4}
\end{equation*}
$$

gives the distortion in a direction tilted by the angle $\varphi_{\text {elast }}$ off the $[1,0,0]_{\text {tetr }}$ direction with

$$
\begin{equation*}
\tan \left(2 \varphi_{\text {elast }}\right)=e_{\mathrm{A}} / e_{\mathrm{X}} \tag{5}
\end{equation*}
$$

3.2. Monoclinic birefringence

In the orthorhombic phases where either $e_{\mathrm{X}}=0$ or $e_{\mathrm{A}}=0$, the distortions e_{A} and e_{X}, respectively, cause a birefringence $\delta n(\lambda)(\lambda=$ wavelength of the light), whose dependence on the distortions is written as

$$
\begin{equation*}
\delta n_{\mathrm{A}}(\lambda)=f_{\mathrm{A}}\left(\lambda, e_{\mathrm{A}}\right) \tag{6}
\end{equation*}
$$

for the Γ_{4}^{+}distorted crystals and

$$
\begin{equation*}
\delta n_{\mathrm{X}}(\lambda)=f_{\mathrm{X}}\left(\lambda, e_{\mathrm{X}}\right) \tag{7}
\end{equation*}
$$

for the Γ_{3}^{+}distorted crystals. Here δn_{A} or δn_{X} are the differences of the principal refractive indices. In the simplest case the functions f_{A} and f_{X} are linear in e_{A} and e_{X}, respectively.

In the monoclinic phase, both e_{A} and e_{X} are different from zero. Using Maxwell's and the material equations one gets the eigenvalue equation for n^{-2} (see, e.g. [4])

$$
\begin{equation*}
\left(n^{-2} \delta_{\alpha \beta}-B_{\alpha \beta}\right) D_{\beta}=0 \tag{8}
\end{equation*}
$$

where $\alpha, \beta=1,2$ denote the coordinates perpendicular to the wave normal, δ the Kronecker symbol, B the reciprocal permittivity tensor and D the electric displacement. Because of symmetry reasons, the elements of the tensor B in the monoclinic phase $\left(B_{\alpha \beta}\right)$ are connected with those in the tetragonal phase $\left(B_{11}^{0}\right)$ by $B_{11}=B_{11}^{0}+\Delta B_{11}, B_{22}=$ $B_{11}^{0}-\Delta B_{11}, B_{12}=\Delta B_{12}$. Assuming ΔB_{11} and ΔB_{12} to be small compared with B_{11}^{0}, the difference of the principal refractive indices is given by

$$
\begin{equation*}
\delta n=n_{1}-n_{2}=-n_{0}^{3}\left[\left(\Delta B_{11}\right)^{2}+\left(\Delta B_{12}\right)^{2}\right]^{1 / 2} \tag{9}
\end{equation*}
$$

with $n_{0}=1 /\left(B_{11}^{0}\right)^{1 / 2}$ the refractive index of the undistorted tetragonal phase. In the two orthorhombic phases with either $\Delta B_{12}=0$ or $\Delta B_{11}=0$, δn equals the birefringences δn_{A} or δn_{X}, respectively, i.e.

$$
\begin{align*}
& \delta n_{\mathrm{A}}=-n_{0}^{3} \Delta B_{11} \\
& \delta n_{\mathrm{X}}=-n_{0}^{3} \Delta B_{12} \tag{10}
\end{align*}
$$

Using these equations, one gets the expression for the monoclinic phase

$$
\begin{equation*}
\delta n(\lambda)=\left[\delta n_{\mathrm{A}}^{2}(\lambda)+\delta n_{\mathrm{X}}^{2}(\lambda)\right]^{1 / 2} \tag{11}
\end{equation*}
$$

While in the two orthorhombic phases δn_{A} and δn_{x}, respectively, are differences of principal refractive indices, this meaning is lost in the monoclinic phase.

The direction of the azimuth $\varphi_{\text {opt }}$ (the angle between the direction of one of the principal refractive indices and the \boldsymbol{a} axis; see figure 1) corresponds to the direction of an eigenvector of equation (8) which is given by

$$
\begin{equation*}
\tan \left[2 \varphi_{\mathrm{opt}}(\lambda)\right]=\delta n_{\mathrm{X}}(\lambda) / \delta n_{\mathrm{A}}(\lambda) \tag{12}
\end{equation*}
$$

To study the dependence of the birefringence on the distortion, δn_{A} and δn_{X} (and not δn and $\varphi_{\text {opt }}$) are the quantities directly depending on the distortion of the crystal.

3.3. Measurement of monoclinic birefringence

Several more or less expansive techniques for the measurement of the monoclinic birefringence have been published [5-7]. In these techniques δn and $\varphi_{\text {opt }}$ are measured. In principle δn_{A} and δn_{X} could be determined through the inversion of equations (11) and (12). None of these techniques was suitable in our case, however, since the cryostat windows had a relatively high birefringence, which even depended on the locus of the penetration and caused errors especially for $\varphi_{\text {opt }} \simeq \pi / 4$. Detailed calculations proved that an arrangement in which δn_{A} and δn_{X} are measured directly is less sensitive to the errors introduced by the unknown birefringence of the windows. Therefore the set-ups described in § 2 were used.

Applying Jones' calculus for the optical components [8], the compensator phase σ_{C} to produce zero intensity of the modulation frequency at the detector is given by

$$
\begin{equation*}
\tan \sigma_{\mathrm{C}}=\frac{-\sin \sigma \cos (2 \varphi)}{\cos ^{2}(2 \varphi) \cos \sigma+\sin ^{2}(2 \varphi)} \tag{13}
\end{equation*}
$$

where $\sigma=\delta n 2 \pi d / \lambda$ ($d=$ thickness of the crystal), $\varphi=\varphi_{\text {opt }}+\pi / 4$ for set-up I and $\varphi=\varphi_{\text {opt }}$ for set-up II, respectively (see figure 1). σ_{C} is transformed to the apparent birefringence $\delta n_{\text {app }}$ through $\delta n_{\text {app }}=\sigma_{\mathrm{C}} \lambda / 2 \pi d$. Substituting equations (11) and (12) and the above relations into equation (13), leads to the formulae
$\delta n_{\mathrm{app}}=\frac{\lambda}{2 \pi d} \tan ^{-1}\left(\frac{\delta n_{\mathrm{X}}\left(\delta n_{\mathrm{X}}^{2}+\delta n_{\mathrm{A}}^{2}\right)^{1 / 2} \sin \left[(2 \pi d / \lambda)\left(\delta n_{\mathrm{X}}^{2}+\delta n_{\mathrm{A}}^{2}\right)^{1 / 2}\right]}{\delta n_{\mathrm{A}}^{2}+\delta n_{\mathrm{X}}^{2} \cos \left[(2 \pi d / \lambda)\left(\delta n_{\mathrm{X}}^{2}+\delta n_{\mathrm{A}}^{2}\right)^{1 / 2}\right]}\right)+\frac{N \lambda}{2 d}$
for set-up I and
$\delta n_{\text {app }}=\frac{\lambda}{2 \pi d} \tan ^{-1}\left(\frac{-\delta n_{\mathrm{A}}\left(\delta n_{\mathrm{X}}^{2}+\delta n_{\mathrm{A}}^{2}\right)^{1 / 2} \sin \left[(2 \pi d / \lambda)\left(\delta n_{\mathrm{X}}^{2}+\delta n_{\mathrm{A}}^{2}\right)^{1 / 2}\right]}{\delta n_{\mathrm{X}}^{2}+\delta n_{\mathrm{A}}^{2} \cos \left[(2 \pi d / \lambda)\left(\delta n_{\mathrm{X}}^{2}+\delta n_{\mathrm{A}}^{2}\right)^{1 / 2}\right]}\right)+\frac{N \lambda}{2 d}$
for set-up II, respectively, where the integer N is due to the ambiguity of the $\tan ^{-1}$ function. In these equations the unknown birefringence of the cryostat windows is not taken into account. As the calculations showed its consideration would change the results of the measurements only slightly.

For the following limits equations (14) and (15) can be simplified:
(i) Both birefringences, δn_{A} and δn_{X}, are small with $\left[(2 \pi d / \lambda)\left(\delta n_{\mathrm{X}}^{2}+\delta n_{\mathrm{A}}^{2}\right)^{1 / 2}\right] \S$ $\pi / 2$. Then $\delta n_{\text {app }}=\delta n_{\mathrm{X}}$, measured in set-up I, and $\delta n_{\text {app }}=\delta n_{\mathrm{A}}$, measured in set-up II, respectively. That means that both birefringences are correctly measured.
(ii) One of the birefringences is small and small compared to the other, e.g. $\left|\delta n_{\mathrm{X}}\right| \ll$ $\left|\delta n_{\mathrm{A}}\right|$ and $\delta n_{\mathrm{X}} \ll \pi / 2$. Then with equation (15), the greater birefringence, δn_{A}, is correctly measured, but the smaller one, δn_{X}, cannot be determined at all.

Figure 2. Measured birefringence of $\left(\mathrm{Tb}_{0.4}, \mathrm{Dy}_{0.6}\right) \mathrm{VO}_{4}$ as a function of temperature around the phase transitions at $T_{\mathrm{D} 1}$ and $T_{\mathrm{D} 2}, \lambda=691 \mathrm{~nm}$. Squares: δn_{A}, $\boldsymbol{B} \| \boldsymbol{a}(B=0.03 \mathrm{~T})$. Triangles: $-\delta n_{\mathrm{x}}, \boldsymbol{B} \| \boldsymbol{x}$ ($B=0.05 \mathrm{~T}$). Inset: δn_{A} in the low-temperature region. To avoid overlap not all experimental points are shown in this and the following figures.

4. Experimental results and discussion

The limits discussed at the end of the last section are realised for some temperature and wavelength regions.

The δn_{A} birefringence is correctly measured for the crystals $\left(\mathrm{Tb}_{0.35}, \mathrm{Dy}_{0.65}\right) \mathrm{VO}_{4}$ and ($\mathrm{Tb}_{0.4}, \mathrm{Dy}_{0.6}$) VO_{4} in the green, yellow and red parts of the spectrum, for $T<T_{\mathrm{D} 2}$. The reason is that $\left|\delta n_{\mathrm{X}}\right|$ is very small in this spectral range because of the compensation of different contributions to the birefringence (see paper II). In figure 2 the temperature dependence of δn_{A} (measured in set-up II, in a magnetic field $\boldsymbol{B} \| \boldsymbol{a}$) and that of δn_{X} (measured in set-up I, in a magnetic field $\boldsymbol{B} \| \boldsymbol{x}$) are compared for $\left(\mathrm{Tb}_{0.4}, \mathrm{Dy}_{0.6}\right) \mathrm{VO}_{4}$ at $\lambda=691 \mathrm{~nm}$. For $T_{\mathrm{D} 2}<T<T_{\mathrm{D} 1}$ both δn_{A} and δn_{X} are small and the limit (i) is realised. For $T<T_{\mathrm{D} 2}, \delta n_{\mathrm{A}}$ is increased to such values that the limit (ii) is realised. In this temperature region the birefringence δn_{X} cannot then be ascertained.

In figure 3 measurements on $\left(\mathrm{Tb}_{0.35}, \mathrm{Dy}_{0.65}\right) \mathrm{VO}_{4}$ at $\lambda=436 \mathrm{~nm}$ are presented. Figure $3(a)$ shows δn_{A} measured in set-up II with $\boldsymbol{B} \| \boldsymbol{a}$ together with a calculation for a Γ_{4}^{+} distortion on the basis of the theoretical model developed in paper II for the orthorhombic case. Although in the orthorhombic symmetry with Γ_{3}^{+}distortion the δn_{X} birefringence changes by orders of magnitude over the visible part of the spectrum, the δn_{A} curves measured on this sample for different wavelengths are proportional to each other to a very good approximation. Thus the agreement between measurements and calculations is very good for all wavelengths. Figure $3(b)$ shows δn_{X} measured in set-up I with $\boldsymbol{B} \| \boldsymbol{x}$ together with the calculation for a Γ_{3}^{+}distortion by means of the theoretical model developed in II. Again there is very good agreement for the temperature region $T_{\mathrm{D} 2}<T<T_{\mathrm{D} 1}$. The deviations between the measurements and the calculation for $T<T_{\mathrm{D} 2}$ are a clear indication of the occurrence of an additional Γ_{4}^{+}distortion, leading to a lowering of the crystal symmetry to monoclinic. The parameters used for the calculations of the order parameters e_{A} and e_{X} are given in table 3 of paper I, and the connection with the birefringence shown in figures $3(a)$ and (b) is established via equations (14) and (16) of paper II using the parameters given in table 3 of II.

For a magnetic field $\boldsymbol{B} \| \boldsymbol{w}$, in set-up II, the situation is quite different. No Γ_{3}^{+}domains are present in this case (see paper I) and the δn_{X} birefringence affects the measurement of δn_{A}. The measured curve (figure $3(a)$ and the enlargement of the region around $T \simeq$ 6.5 K , figure $3(d)$) differs distinctly from the δn_{A} curve shown in figure $3(a)$. The

Figure 3. Measured birefringence of $\left(\mathrm{Tb}_{0.35}, \mathrm{Dy}_{0.65}\right) \vee \mathrm{VO}_{4}, \lambda=436 \mathrm{~nm}$ (dots) compared with theoretical curves (full curves). (a) $\delta n_{\mathrm{A}}, \boldsymbol{B} \| \boldsymbol{a}(B=0.15 \mathrm{~T})$, curve calculated according to equation (17) of paper II. (b) $\delta n_{\mathrm{x}}, \boldsymbol{B} \| \boldsymbol{x}(B=0.15 \mathrm{~T})$, curve calculated according to equation (15) of paper II. (c) Birefringence $\delta n_{\text {app }}$, measured in set-up II, $B \| \boldsymbol{w}(B=0.15 \mathrm{~T})$. Full curve: calculated according to equation (12) of this paper using the calculated δn_{A} and δn_{X} values of (a) and (b). Broken curve: calculated assuming δn_{X} to be constant for $T \leqslant 5.3 \mathrm{~K}$. (d) Enlargement of (c) around $T=6.5 \mathrm{~K}$.
apparent birefringence curve in this case is well explained by a superposition of the intrinsic δn_{A} and δn_{X} according to equation (15). The values of δn_{A} and δn_{X} were taken from the calculations of figures $3(a)$ and (b). Both the number and the amplitude of the strange oscillations for $5.5 \mathrm{~K}<T<7.5 \mathrm{~K}$ are correctly reproduced. Inspection of equation (15) shows that these oscillations occur if $\left|\delta n_{\mathrm{A}}\right|<\left|\delta n_{\mathrm{x}}\right|$ and if simultaneously the argument of the sine function in the numerator of equation (15) varies by more than 2π. The exact position of the oscillations differs somewhat for calculation and measurement. This does not question the validity of equation (15), but can be explained with inaccuracies in the temperature measurements. In the same way, the apparent birefringence is qualitatively well reproduced for $T<T_{\mathrm{D} 2}$. It is sensitive to changed values of δn_{X}, as is shown by a comparison of the different calculations in figure $3(c)$. The full curve is calculated using δn_{X} as shown by the full curve in figure $3(b)$, the broken curve using the minimum of the calculated δn_{X} (at $T=5.3 \mathrm{~K}$) as a fixed value. Although

Figure 4. Measured temperature dependence of the birefringence δn_{A} of $\left(\mathrm{Tb}_{0.45}, \mathrm{Dy}_{0.55}\right) \mathrm{VO}_{4}$ for different external fields $\boldsymbol{B} \| a, \lambda=633 \mathrm{~nm}:-B=0.05 \mathrm{~T} ; \boldsymbol{\Delta}$, $B=0.10 \mathrm{~T} ; \quad, \quad B=0.15 \mathrm{~T}$.
therefore the course of δn_{X} for $T<T_{\mathrm{D} 2}$ cannot be deduced exactly from the measurement of the apparent birefringence, it is not in contradiction to the assumed mean-field behaviour. This leads to the conclusion that within the measuring accuracy the distortions e_{A} and e_{X} responsible for the corresponding intrinsic birefringences δn_{A} and δn_{X} do not affect each other. Irrespective of this, δn_{A} in the monoclinic phase depends in some way on e_{X} because the Tb contribution to δn_{A} depends on its occupation numbers and thus on e_{X} (see paper II).

For $\left(\mathrm{Tb}_{0.4}, \mathrm{Dy} \mathrm{y}_{0.6}\right) \mathrm{VO}_{4}$ and $\left(\mathrm{Tb}_{0.45}, \mathrm{Dy}_{0.55}\right) \mathrm{VO}_{4}$ the apparent birefringence curves can be explained in the same way by the superposition of the intrinsic δn_{A} and δn_{x} curves. For $\left(\mathrm{Tb}_{0.45}, \mathrm{Dy}_{0.55}\right) \mathrm{VO}_{4}$ (and also for the crystals with a higher Tb^{3+} content) no Γ_{4}^{+}phase transition exists. Despite this, in finite magnetic fields a strong intrinsic δn_{A} birefringence is observed (corresponding to the high-temperature tail of the birefringence for the crystals with phase transition). In figure 4 this is shown for different

Figure 5. Birefringence $\delta n_{\text {app }}$ of $\left(\mathrm{Tb}_{0.45}, \mathrm{Dy}_{0.55}\right) \mathrm{VO}_{4}$, measured in set-up I with $\boldsymbol{B} \| \boldsymbol{w}$ ($B=0.15 \mathrm{~T}$), compared with a calculation according to equation (11) (full curve) using the intrinsic birefringences δn_{X} (broken curve) and $-\delta n_{\mathrm{A}}$ (chain curve). (a) $\lambda=547 \mathrm{~nm}$. Inset: enlargement of the region around $T \simeq 3 \mathrm{~K}$. (b) $\lambda=436 \mathrm{~nm}$.
magnetic fields at $\lambda=633 \mathrm{~nm}$, where $\left|\delta n_{\mathrm{X}}\right|$ is very small $\left(\left|\delta n_{\mathrm{X}}\right| \ll 0.3 \times 10^{-4}\right)$ and according to the limit (ii) δn_{A} is correctly measured. In figure 5 the measured $\delta n_{\text {app }}$ is compared with a calculation according to equation (14) for $\left(\mathrm{Tb}_{0.45}, \mathrm{Dy}_{0.55}\right) \mathrm{VO}_{4}$ at $\lambda=547 \mathrm{~nm}$ (figure $5(a)$) and $\lambda=436 \mathrm{~nm}$ (figure $5(b)$). The observed oscillation for $\lambda=547 \mathrm{~nm}$ has the same reason as discussed in connection with figure 3 . Because of the greater intrinsic $\left|\delta n_{\mathrm{X}}\right|$ for $\lambda=436 \mathrm{~nm}$ (figure $5(b)$) the apparent birefringence $\delta n_{\text {app }}$ approaches the intrinsic δn_{X} at a lower temperature already than for $\lambda=547 \mathrm{~nm}$ (figure $5(a)$).

5. Summary

The measured apparent birefringence in the monoclinic phase of the mixed JahnTeller system $\left(\mathrm{Tb}_{x}, \mathrm{Dy}_{1-x}\right) \mathrm{VO}_{4}$ could be explained by the superposition of the intrinsic birefringences δn_{A} and δn_{X} corresponding to the distortion types Γ_{4}^{+}and Γ_{3}^{+}. The simultaneous existence of these two birefringences affects in a non-trivial manner the measured birefringence in the experimental arrangement used. It is shown that, apart from the direct superposition of the Γ_{3}^{+}and Γ_{4}^{+}distortion types, no other effect acts on the birefringence. Especially the two distortions do not affect each other.

References

[1] Hess G, Dammann M, Kahle H G, Kasten A, Seifert C and Vögtlin K 1989 J. Phys.: Condens. Matter 2 1073
[2] Hess G 1989 J. Phys.: Condens. Matter 21097
[3] Nye J F 1985 Physical Properties of Crystals (Oxford: Clarendon)
[4] Landau L D and Lifshitz E M 1960 Electrodynamics of Continuous Media (Oxford: Pergamon)
[5] Koñák Č. Smutný F, Březina B and Budik L 1978 Ferroelectrics 21 361-3
[6] Bismayer U, Salje E, Glazer A M and Cosier J 1986 Phase Transitions 6 129-51
[7] Holzapfel W and Riss U 1987 Appl. Opt. 26 145-53
[8] Jones R C 1941 J. Opt. Soc. Am. 31 488-503

