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Abstract. Birefringence measurements on the mixed crystal system (Tb,,Dy, _,)VO, at 
different wavelengths in the visible part of the spectrum prove the macroscopic superposition 
of the two distortion types of Jahn-Teller-active TbVOl and DyVOJ for concentrations 
0.35 c x G 0.45. Because of the superposition of the distortion types the crystals become 
monoclinic at low temperatures. 

1. Introduction 

In the first paper of this series [l] ,  henceforth referred to as I, we reported on the phase 
diagram of the mixed Jahn-Teller system (Tb,,Dy,_,)VO4 (figure 1 of paper I). For 
concentrationsx s 0.3 the crystals distort like pure DyV04,  which lowers its tetragonal 
high-temperature structure by a r,t distortion, i.e. the square base of the unit cell 
becomes a rectangle. For x 2 0.45 the crystals distort like pure TbV04,  which lowers its 
symmetry by a r; distortion, i.e. the square base of the unit cell becomes a rhomb. For 
x = 0.35, x = 0.40 and in finite magnetic fields for x = 0.45, the two distortion types 
superimpose. This means that at T = TD, the crystals become r: distorted and at T = 
TD, < T,, they additionally become r,t distorted. They are then monoclinic and a 
dispersion of the optical indicatrix axes is observed (paper I). 

In the second paper [2], henceforth referred to as 11, we presented studies of the 
linear optical birefringence for the two orthorhombic phases. In the present paper we 
discuss the consequences of the superposition of the two types of distortion for the 
birefringence. We further show that the observed birefringence curves in this phase are 
caused by the simultaneous presence of the two distortions. 

2. Experimental details 

The low-temperature set-up and the light sources used in the experiments were the same 
as in paper 11. The birefringence was measured by using light modulation (50 kHz) and 
computer-controlled compensation of the corresponding phase difference through a 
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Figure 1. Set-up of the optical components. The axes are defined in terms of the undistorted 
tetragonal crystal system as a = [1,0,0], b = [0,1,0], x = [1,1,0] and y = [ l , i , O ] .  The light 
propagates along c = [0,0,1]. Full lines: transmission direction of polariser and analyser. 
Broken lines: directions of the azimuths of modulator and compensator, thus being at n/4 
with respect to the transmission direction of the polariser. Chain line: direction of one of the 
principal refractive indices of the sample; rpop, is the angle between the latter direction and 
the a axis. (a )  Set-up I ,  generally used for measuring 6nx; in this case p = qOpt + n/4. ( b )  
Set-up 11, generally used for measuring an,; in this case q = qopt. 

compensator. Two optical set-ups were used (see figure 1). In set-up I the transmission 
direction of the polariser is along a orb ,  the azimuths of modulator and compensator at 
n/4 with respect to a and b (figure l(a)). This set-up was used to measure the birefrin- 
gence anx in the orthorhombic case (see paper 11) and it was also generally used for 
measuring anx in the monoclinic case. In set-up I1 the optical components (polariser, 
modulator, compensator and analyser) are turned by n/4 with respect to set-up I ,  but 
the sample is left in its position (figure l(b)). This set-up was used to measure the 
birefringence an,. To avoid crystallographic domains a small magnetic field was applied. 
Three different field directions with respect to the crystal axes were used: (i) parallel to 
a, in which case no r,+ domains exist but r: domains are present, however; (ii) parallel 
to x, in which case no r: domains exist but r; domains are present; (iii) parallel to w 
with w = bisectrix of a and x, i.e. 0: (a, w) = Q (w, x) = n/8, in which case neither rf 
domains nor r,+ domains exist. 

3. Birefringence in monoclinic crystals 

3.1, Monoclinic distortion 

In paper I the distortions of the pure substances DyV04 and TbV04  were written as 

eA = 2e,, = el ,  - e22 = Aa/a - Ab/b (1) 

for the I?: distorted DyVO, and 

ex = 2e12 = Ax/. - Ay/y (2) 

for the r: distorted TbV04.  Here ell, e12,, e22 are components of the strain tensor [ 3 ] ,  
a, b are the tetragonal [1,0,0] and [0,1,0] directions and x , y  are the tetragonal [1,1,0] 
and [ l , i , O ]  directions, respectively. 
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The strain tensor for a superposition of the two distortion types then reads 

where the third components are omitted. The difference of the eigenvalues of the 
tensor e 

- h2 = (ea + e;)’’’ (4) 

tan(We1ast) = eA/ex. ( 5 )  

gives the distortion in a direction tilted by the angle velast off the [l,O,0ltet, direction with 

3.2. Monoclinic birefringence 

In the orthorhombic phases where either e, = 0 or e A  = 0, the distortions e A  and ex, 
respectively, cause a birefringence &(A)  (A = wavelength of the light), whose depen- 
dence on the distortions is written as 

= f A ( A  , eA)  (6) 

for the r,+ distorted crystals and 

for the r: distorted crystals. Here 6nA or 6nx are the differences of the principal 
refractive indices. In the simplest case the functions f A  and fx are linear in e A  and ex, 
respectively. 

In the monoclinic phase, both e A  and e, are different from zero. Using Maxwell’s 
and the material equations one gets the eigenvalue equation for n-* (see, e.g. [4]) 

(K26,@ - B,,)D, = 0 (8) 
where CY, = 1, 2 denote the coordinates perpendicular to the wave normal, 6 the 
Kronecker symbol, B the reciprocal permittivity tensor and D the electric displacement. 
Because of symmetry reasons, the elements of the tensor B in the monoclinic phase 
(Be@) are connected with those in the tetragonal phase (B!,) by B1, = By1 + AB11, B22 = 
BYl - AB,, , B12 = ABl2. Assuming ABl1 and ABI2 to be small compared with By,, the 
difference of the principal refractive indices is given by 

6n = n l  - n2  = + (AB12)2]1/2 (9) 
with no = l/(Byl)1’2 the refractive index of the undistorted tetragonal phase. In the two 
orthorhombic phases with either ABl2 = 0 or AB,, = 0, 6n equals the birefringences 
6nA or anx, respectively, i.e. 

6nA = -ni ABl1 

6nx = -ni  ABl2. 

Using these equations, one gets the expression for the monoclinic phase 

6 n ( ~ )  = [6na(A) + 6nb(~)]”’ .  (11) 
While in the two orthorhombic phases 6nA and anx, respectively, are differences of 
principal refractive indices, this meaning is lost in the monoclinic phase. 
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The direction of the azimuth qopt (the angle between the direction of one of the 
principal refractive indices and the a axis; see figure 1) corresponds to the direction of 
an eigenvector of equation (8) which is given by 

tan [2qopt(A)] = 6nX(A>/SnA(A>. (12) 

To study the dependence of the birefringence on the distortion, 6nA and an, (and 
not 6n and q0,J are the quantities directly depending on the distortion of the crystal. 

3.3. Measurement of monoclinic birefringence 

Several more or less expansive techniques for the measurement of the monoclinic 
birefringence have been published [5-71. In these techniques 6n and qopt are measured. 
In principle an, and 6nx could be determined through the inversion of equations (11) 
and (12). None of these techniques was suitable in our case, however, since the cryostat 
windows had a relatively high birefringence, which even depended on the locus of the 
penetration and caused errors especially for qopl = n/4. Detailed calculations proved 
that an arrangement in which anA and 6nx are measured directly is less sensitive to the 
errors introduced by the unknown birefringence of the windows. Therefore the set-ups 
described in $ 2  were used. 

Applying Jones’ calculus for the optical components [8], the compensator phase uc 
to produce zero intensity of the modulation frequency at the detector is given by 

-sin U cos(2q) 
c0s2(2q) cos U + sin2(2q) 

tan U, = 

where U = 6n2nd/A (d  = thickness of the crystal), q = qOpt + n/4 for set-up I and 
= qopt for set-up 11, respectively (see figure 1). uc is transformed to the apparent 

birefringence 6napp through anapp = ucA/2nd. Substituting equations (11) and (12) and 
the above relations into equation (13), leads to the formulae 

6napp = -tan-’ 

for set-up I and 

A 
2nd 

6nX(6n$ + 6n2,)1/2 s in[ (2nd/~) (6ni  + 6n2,>li2] 

for set-up 11, respectively, where the integer N is due to the ambiguity of the tan-’ 
function. In these equations the unknown birefringence of the cryostat windows is not 
taken into account. As the calculations showed its consideration would change the 
results of the measurements only slightly. 

For the following limits equations (14) and (15) can be simplified: 

(i) Both birefringences, 6nA and anx, are small with [(2nd/A)(Sn$ + 6n’,)’/*] e 
n/2. Then anapp = 8nx, measured in set-up I ,  and 6napp = anA, measured in set-up 11, 
respectively. That means that both birefringences are correctly measured. 

(ii) One of the birefringences is small and small compared to the other, e.g. 16nxl Q 

/6nAl and 6nx < n/2. Then withequation (15), the greater birefringence, anA, iscorrectly 
measured, but the smaller one, 6nx, cannot be determined at all. 
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Figure 2. Measured birefringence of 
(Tbo4,Dy,,,)V04 as a function of tem- 
perature around the phase transitions at 
T D ~  and TD,, = 691 nm. Squares: an,, 
Blla ( E  = 0.03T).  Triangles: - a n x ,  Bllx 
( E  = 0.05 T ) .  Inset: an, in the low-tem- 
perature region. To avoid overlap not all 
experimental points are shown in this and 
the following figures. 

4. Experimental results and discussion 

The limits discussed at the end of the last section are realised for some temperature and 
wavelength regions. 

The anA birefringence is correctly measured for the crystals (Tbo.35,Dyo.65)V04 and 
(Tbo,4,Dyo.6)V04 in the green, yellow and red parts of the spectrum, for T < TD2. The 
reason is that /6nxl is very small in this spectral range because of the compensation of 
different contributions to the birefringence (see paper 11). In figure 2 the temperature 
dependence of an, (measured in set-up 11, in a magnetic field Blla) and that of anx 
(measured in set-up I, in a magnetic field Bllx) are compared for (Tbo,4,Dyo,6)V04 at 
A = 691 nm. For TD2 < T < TD, both an, and anx are small and the limit (i) is realised. 
For T <  TD2, anA is increased to such values that the limit (ii) is realised. In this 
temperature region the birefringence anx cannot then be ascertained. 

In figure 3 measurements on (Tbo,35,Dy,,,5)V04 at A = 436 nm are presented. Figure 
3(a) shows anA measured in set-up I1 with Blla together with a calculation for a ri 
distortion on the basis of the theoretical model developed in paper I1 for the ortho- 
rhombic case. Although in the orthorhombic symmetry with r: distortion the anx 
birefringence changes by orders of magnitude over the visible part of the spectrum, the 
anA curves measured on this sample for different wavelengths are proportional to each 
other to a very good approximation. Thus the agreement between measurements and 
calculations is very good for all wavelengths. Figure 3(b)  shows anx measured in set-up 
I with B I/x together with the calculation for a r: distortion by means of the theoretical 
model developed in 11. Again there is very good agreement for the temperature region 
TD2 < T < TD,. The deviations between the measurements and the calculation for 
T < TD2 are a clear indication of the occurrence of an additional r; distortion, leading 
to a lowering of the crystal symmetry to monoclinic. The parameters used for the 
calculations of the order parameters eA and ex are given in table 3 of paper I ,  and 
the connection with the birefringence shown in figures 3(a) and ( b )  is established via 
equations (14) and (16) of paper I1 using the parameters given in table 3 of 11. 

For a magnetic fieldB I /  w ,  in set-up 11, the situation is quite different. No r: domains 
are present in this case (see paper I) and the 6nx birefringence affects the measurement 
of anA. The measured curve (figure 3(a) and the enlargement of the region around T = 
6.5 K,  figure 3(d))  differs distinctly from the anA curve shown in figure 3(a). The 
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Figure 3. iMeasured birefringence of (Tb,, is,Dyll 65)VO+ A = 436 nm (dots) compared with 
theoretical curves (full curves). ( a )  an,, Blla ( B  = 0.15 T) ,  curve calculated according to 
equation (17) of paper 11. (6) 6nx,Bllx(B = 0.15 T) ,  curve calculated according toequation 
(15)ofpaperII. (c)Birefringence6n,,,.measuredinset-upII,Bllw(B = 0.15 T).FuIIcurve: 
calculated according to equation (12) of this paper using the calculated 6nA and 6nx values 
of ( a )  and (b ) .  Broken curve: calculated assuming 6nx to be constant for T C  5.3 K.  (d) 
Enlargement of (c) around T =  6.5 K 

apparent birefringence curve in this case is well explained by a superposition of the 
intrinsic an, and anx according to equation (15). The values of an, and anx were taken 
from the calculations of figures 3 ( a )  and (b) .  Both the number and the amplitude of 
the strange oscillations for 5.5 K < T < 7.5 K are correctly reproduced. Inspection of 
equation (15 )  shows that these oscillations occur if )6n,l < /6nxl and if simultaneously 
the argument of the sine function in the numerator of equation (15) varies by more 
than 2n. The exact position of the oscillations differs somewhat for calculation and 
measurement. This does not question the validity of equation (15), but can be explained 
with inaccuracies in the temperature measurements. In the same way, the apparent 
birefringence is qualitatively well reproduced for T < TD2. It is sensitive to changed 
values of anx, as is shown by a comparison of the different calculations in figure 3 ( c ) .  
The full curve is calculated using anx as shown by the full curve in figure 3 ( b ) ,  the broken 
curve using the minimum of the calculated anx (at T = 5.3 K) as a fixed value. Although 
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Figure 4. Measured temperature depen- 
dence of the birefringence an, of 
(Tb,, 4s,Dy,, ss )V04 for different external 

therefore the course of 6nxfor T < TD2 cannot be deduced exactly from the measurement 
of the apparent birefringence, it is not in contradiction to the assumed mean-field 
behaviour. This leads to the conclusion that within the measuring accuracy the distortions 
eA and ex responsible for the corresponding intrinsic birefringences an, and anx do not 
affect each other. Irrespective of this, anA in the monoclinic phase depends in some way 
on e, because the Tb contribution to an, depends on its occupation numbers and thus 
on e,(see paper 11). 

For (Tbo,4,Dy,,,)VOd and (Tb0.45,Dy0.55)V04 the apparent birefringence curves 
can be explained in the same way by the superposition of the intrinsic an, and anx 
curves. For (Tb0,45,Dy0.55)V04 (and also for the crystals with a higher Tb3+ content) no 
r: phase transition exists. Despite this, in finite magnetic fields a strong intrinsic anA 
birefringence is observed (corresponding to the high-temperature tail of the birefrin- 
gence for the crystals with phase transition). In figure 4 this is shown for different 

C L o -  

s 

2 3 4 -  , i 
-6 I I 

C Figure 5.  Birefringence dn,,, of 
(Tbl14s,Dyll Ss)VO,,measuredinset-upIwithB/Iw 
( B  = 0.15 T) ,  compared with a calculation 
according to equation (1 1) (full curve) using the 
intrinsic birefringences dn, (broken curve) and 

5 10 15 enlargement of the region around T =  3 K.  ( b )  

Lo 

8 

I 1 -an, (chain curve). ( a )  A = 547nm. Inset: -181 
0 

T I K )  A = 436 nm. 
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magnetic fields atA = 633 nm, where 16nxl isvery small ( 1  anx 1 and accord- 
ing to the limit (ii) an, is correctly measured. In figure 5 the measured anapp is compared 
withacalculation according to equation (14) for (Tbo,4j,Dyo,j5)V04at A = 547 nm (figure 
5(a)) and A = 436 nm (figure 5(b)). The observed oscillation for A = 547 nm has the 
same reason as discussed in connection with figure 3. Because of the greater intrinsic 
(Snx( for A = 436 nm (figure 5(b)) the apparent birefringence anapp approaches the 
intrinsic anx at a lower temperature already than for A = 547 nm (figure 5(a)). 

0.3 x 

5.  Summary 

The measured apparent birefringence in the monoclinic phase of the mixed Jahn- 
Teller system (Tb,,Dy, -,)V04 could be explained by the superposition of the intrinsic 
birefringences an, and anx corresponding to the distortion types r,+ and r:. The 
simultaneous existence of these two birefringences affects in a non-trivial manner the 
measured birefringence in the experimental arrangement used. It is shown that, apart 
from the direct superposition of the r.; and r,+ distortion types, no other effect acts on 
the birefringence. Especially the two distortions do not affect each other. 
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